Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease‐related deaths worldwide. It uses ESX‐1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis. During infection, M. tb and host mitochondria release dsDNA, which activates the CGAS‐STING1 pathway. This pathway leads to the production of type I interferons and proinflammatory cytokines and activates autophagy, which targets and degrades bacteria within autophagosomes. However, the role of type I IFNs in immunity against M. tb is controversial. While previous research has suggested a protective role, recent findings from cgas‐sting1 knockout mouse studies have contradicted this. Additionally, a study using knockout mice and non‐human primate models uncovered a new mechanism by which neutrophils recruited to lung infections form neutrophil extracellular traps. Activating plasmacytoid dendritic cells causes them to produce type I IFNs, which interfere with the function of interstitial macrophages and increase the likelihood of tuberculosis. Notably, M. tb uses its virulence proteins to disrupt the CGAS‐STING1 signaling pathway leading to enhanced pathogenesis. Investigating the CGAS‐STING1 pathway can help develop new ways to fight tuberculosis.