In this study 163 complete whole-genome sequences of the emerging pathogen grapevine red blotch virus (GRBV; genus Grablovirus, family Geminiviridae) were used to reconstruct phylogenies using Bayesian analyses on time-tipped (heterochronous) data. Using different combinations of priors, Bayes factors identified heterochronous datasets (3×200 million chains) generated from strict clock and exponential tree priors as being the most robust. Substitution rates of 3.2×10−5 subsitutions per site per year (95% HPD 4.3–2.1×10−5) across the whole of the GRBV genome were estimated, suggesting ancestral GRBV diverged from ancestral wild Vitis latent virus 1 around 9 000 years ago, well before the first documented arrival of Vitis vinifera in North America. Whole-genome analysis of GRBV isolates in a single infected field-grown grapevine across 12 years identified 12 single nucleotide polymorphisms none of which were fixed substitutions: an observation not discordant with the in silico estimate. The substitution rate estimated here is lower than those estimated for other geminiviruses and is the first for a woody-host-infecting geminivirus.