“…The observed residual errors in the hybrid numerical-experimental identification process hence were fully consistent with the level of uncertainty normally entailed by FEMU-based characterization. Optically measured (d) Remarkably, HS-JAYA solved variants 1 and 2 of the identification problem including, respectively, 324 and 110 unknown material/structural parameters, a significantly larger number of unknowns than those usually reported in the literature for elastomers and rubberlike materials [66][67][68][69][70][71][72] (from two to six unknown material parameters or neural networks depending on three input characteristics), visco-hyperelastic materials [73][74][75] (from six to nine unknown material parameters including tangent modulus and softening index, Prony constants and relaxation times), biological tissues [76][77][78][79][80][81] (from five to sixteen unknowns accounting also for visco-elastic effects and stochastic variation of material properties), non-homogeneous hyperelastic structures [37,63,[82][83][84] (from four to sixteen unknown material parameters for the global model, or two unknown material parameters for each local inverse problem at the element level) or anisotropic hyperelastic materials modeled with much more complicated constitutive equations [27,34,[84][85][86] (from three to seventeen unknown material parameters). A very recent study by Borzeszkowski et al [38] considered identification problems of nonlinear shells subject to various loading conditions (i.e., uniaxial tension, pure bending, sheet inflation and abdominal wall pressurization).…”