The Dynamic Relaxation (DR) technique together with finite difference discritization is used to study the bending behavior of Mindlin composite plate including geometric nonlinearity. The overall behavior of the unidirectional composite is obtained from a three-dimensional (3D) micromechanical model, in any combination of normal and shear loading conditions, based on the assumptions of Simplified Unit Cell Method (SUCM). The composite system consists of nonlinear viscoelastic matrix reinforced by transversely isotropic elastic fibers. A recursive formulation for the hereditary integral of the Schapery viscoelastic constitutive equation in multiaxial stress state is used to model the nonlinear viscoelastic matrix material in the material level. The creep tests data is used for verification of the predicted response of the current approach. Under uniform lateral pressure, the laminated plate deformation with clamped and hinged edged constraints is predicted for various time steps.