Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The mechanical behaviour of polymer adhesives is influenced by the environmental conditions leading to ageing and affecting the integrity of the material. The polymer adhesives have hygroscopic behaviour and tend to absorb moisture from the environment, causing the material to swell without applying external load. The focus of the work is to investigate the viscoelastic material behaviour under ageing conditions. The constitutive equations and the governing equations to numerically investigate the fracture in swollen viscoelastic material are discussed to describe the numerical implementation. Phase-field damage modelling has been used in numerical studies of ductile and brittle materials for a long time. The finite-strain phase-field damage model is used to investigate the fracture behaviour in aged viscoelastic polymer adhesives. The finite-strain viscoelastic model is formulated based on the continuum rheological model by combining spring and Maxwell elements in parallel. Commercially available post-cured crosslinked polyurethane adhesives are used in the current investigation. Post-cured samples of crosslinked polyurethane adhesives are prepared for different humidity conditions under isothermal conditions. These aged samples are used to perform tensile and tear tests and the test data are used to identify the material parameters from the curve fitting process. The experiment and simulation are compared to relate the findings and are the first step forward to improve the method to model crosslinked polymers.
The mechanical behaviour of polymer adhesives is influenced by the environmental conditions leading to ageing and affecting the integrity of the material. The polymer adhesives have hygroscopic behaviour and tend to absorb moisture from the environment, causing the material to swell without applying external load. The focus of the work is to investigate the viscoelastic material behaviour under ageing conditions. The constitutive equations and the governing equations to numerically investigate the fracture in swollen viscoelastic material are discussed to describe the numerical implementation. Phase-field damage modelling has been used in numerical studies of ductile and brittle materials for a long time. The finite-strain phase-field damage model is used to investigate the fracture behaviour in aged viscoelastic polymer adhesives. The finite-strain viscoelastic model is formulated based on the continuum rheological model by combining spring and Maxwell elements in parallel. Commercially available post-cured crosslinked polyurethane adhesives are used in the current investigation. Post-cured samples of crosslinked polyurethane adhesives are prepared for different humidity conditions under isothermal conditions. These aged samples are used to perform tensile and tear tests and the test data are used to identify the material parameters from the curve fitting process. The experiment and simulation are compared to relate the findings and are the first step forward to improve the method to model crosslinked polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.