Background: The time-temperature superposition principle (TTSP) is often used to estimate the viscoelastic behavior of polymers. It can also be used to evaluate the influence of a given variable, or set of variables, on viscoelastic properties. In this research, the effects of time, temperature, fiber volume fraction and the relative crystallinity of polyamide (PA) and glass fiber-reinforced polyamide (GFRPA) were investigated using the timetemperature superposition principle to estimate viscoelastic behavior under each set of conditions. Methods: The crystallinities of PA and GFRPA, which ranged from 33 to 45%, were controlled by adjusting the duration of crystallization as 250°C. Creep tests were carried out with these materials, and creep compliance curves of each condition were obtained. Results: Using these creep compliance curves, the master curves for temperature, and the grand master curves for crystallinity and for fiber volume fraction were generated to show the relationships between fiber volume fraction, crystallinity, and viscoelastic parameters. Furthermore, the great-grand master curve for crystallinity and fiber volume fraction was generated to predict creep behavior in an arbitrarily condition. The predicted data were in good agreement with experimental results. Conclusions: A method for estimating creep deformation taking into account the effects of influencing variables was developed. The time-temperature superposition principle (TTSP) was applied to the effects of the fiber volume fraction and crystallinity. Grand master curves for crystallinity and fiber volume fraction were obtained by shifting the corresponding master curves. This study demonstrates that the creep behaviors of fiber-reinforced plastics can be estimated using these shift factors and a great-grand master curve. This method yielded estimates of creep deformation that fitted well with experimental results. Based on our findings, it should be possible to control creep deformation in plastics or fiber-reinforced resins by controlling the fiber volume fraction and the crystallinity of the matrix material.