In this paper a new concept of a controllable granular damper is presented. The introduced prototype works based on so-called vacuum packed particles (VPPs). Such structures are made of granular materials located in a soft and hermetic encapsulation. As a result of generating a partial vacuum inside the system, the structure starts to behave like a nonclassical solid body. The global physical (mechanical) features of VPPs depend on the level of internal underpressure. The introduced prototype of a controllable torsional damper exhibits various dissipative properties as a function of internal underpressure. The design details of the investigated device are presented. Basic laboratory tests results are discussed. To describe the hysteretic behavior of the device, the Bouc–Wen rheological model has been modified and adopted. Nonlinear functions of underpressure have been introduced to the initial model formulation. The developed Bouc–Wen model has been applied to capture the real response of the VPP torsional damper prototype.