Abstract:In this paper, an original approach allowing the determination of the iron losses in the electromagnetic devices is presented. This new approach exploits the Loss Surface (LS) hysteresis model and the magnetic flux density waveforms resulting from a generalized nonlinear adaptive magnetic equivalent circuit (MEC) using a mesh-based formulation in two-dimensional (2-D) or quasi three-dimensional (3-D). The model coupling has been applied to a 18-slots/16-poles radial-flux interior permanent-magnet (PM) synchronous machine (PMSM) dedicated to automotive applications, mainly for electric/hybrid/fuel cell vehicles (EVs/HEVs/FCVs). The obtained results have been compared with those made retrospectively in the 2-D transient finite-element (FE) Flux TM . The influence of the MEC discretization on the iron loss calculation and the electromagnetic performances has been analyzed. The computation time is divided by 3/2 with an error less than 7 %.