The efficiency of mixtures of ionic liquids (ILs) and molecular solvents in cellulose dissolution and derivatization depends on the structures of both components. We investigated the ILs 1-(1butyl)-3-methylimidazolium acetate (C4MeImAc) and 1-(2-methoxyethyl)-3-methylimidazolium acetate (C3OMeImAc) and their solutions in dimethyl sulfoxide, DMSO, to assess the effect of presence of an ether linkage in the IL side-chain. Surprisingly, C4MeImAc-DMSO was more efficient than C3OMeImAc-DMSO for the dissolution and acylation of cellulose. We investigated both solvents using rheology, NMR spectroscopy, and solvatochromism. Mixtures of C3OMeImAc-DMSO are more viscous, less basic, and form weaker hydrogen bonds with cellobiose than C4MeImAc-DMSO. We attribute the lower efficiency of C3OMeImAc to "deactivation" of the ether oxygen and C2-H of the imidazolium ring due to intramolecular hydrogen bonding. Using the corresponding ILs with C2-CH3 instead of C2-H, namely, 1-butyl-2,3dimethylimidazolium acetate (C4Me2ImAc) and 1-(2-methoxyethyl)-2,3-dimethylimidazolium acetate (C3OMe2ImAc) increased the concentration of dissolved cellulose; without noticeable effect on biopolymer reactivity.