“…For general fluids, component-specific parameters or relations are necessary. Recent studies have extended this theory by proposing different structures of entropy scaling terms (e.g., refs – ). Motivated by these studies, we propose a combined entropy scaling and Vogel–Fulcher–Tammann (VFT) model that represents viscosity as a function of density, molar weight, temperature, and an entropy scaling term, with the addition of the VFT equation term to account for the temperature dependency of viscosity of ILs ln nobreak0em0.25em μ normalE normalS = A 0 + A 1 .25em ln nobreak0em0.25em ρ + A 2 .25em ln nobreak0em0.25em M + A 3 .25em ln nobreak0em0.25em T + A 4 ( − s ) + A 5 ( − s ) − 1 ln nobreak0em0.25em μ normalV normalF normalT = A 6 1 false( T − 170 .25em normalK false) ln nobreak0em0.25em μ = ln nobreak0em0.25em μ normalE normalS + ln nobreak0em0.25em μ normalV normalF normalT where ln μ ES is the entropy scaling term, s represents the reduced residual entropy given by S res / N A k , ln μ VFT is the VFT equation term, and the ideal glass transition temperature is set at a fixed value of 170 K. The regression results and the relevant parameter values are presented in Figure S3 and Table S6.…”