The motion of a long gas bubble in a confined capillary tube is ubiquitous in a wide range of engineering and biological applications. While the understanding of the deposited thin viscous film near the tube wall in Newtonian fluids is well developed, the deposition dynamics in commonly encountered non-Newtonian fluids remains much less studied. Here, we investigate the dynamics of a confined bubble moving in shear-thinning fluids with systematic experiments, varying the zero-shear-rate capillary number
$Ca_0$
in the range of
$O(10^{-3}\unicode{x2013}10^2)$
considering the zero-shear-rate viscosity. The thickness of the deposited liquid film, the bubble speed and the bubble front/rear menisci are measured, which are further rationalized with the recent theoretical studies based on appropriate rheological models. Compared with Newtonian fluids, the film thickness decreases for both the carboxymethyl cellulose and Carbopol solutions when the shear-thinning effect dominates. We show that the film thickness follows the scaling law from Aussillous & Quéré (Phys. Fluids, vol. 12, no. 10, 2000, pp. 2367–2371) with an effective capillary number
$Ca_e$
, considering the characteristic shear rate in the film as proposed by Picchi et al. (J. Fluid Mech., vol. 918, no. A7, 2021, pp. 1–30).
$Ca_e$
is calculated by the Carreau number and the power-law index from the Carreau–Yasuda rheological model. The shear-thinning effect also influences the bubble speed and delays the transition to the parabolic region in the bubble front and rear menisci. In particular, a high degree of undulations on the bubble surface results in an intricate rear viscosity distribution for the rear meniscus and the deviation between the experiments and theory may require a further investigation to resolve the axial velocity field. Our study may advance the fundamental understandings and engineering guidelines for coating processes involving thin-film flows and non-Newtonian fluids.