Analytical properties of the scalar expansion in the cosmic fluid are investigated, especially near the future singularity, when the fluid possesses a constant bulk viscosity ζ . In addition, we assume that there is a Casimir-induced term in the fluid's energy-momentum tensor, in such a way that the Casimir contributions to the energy density and pressure are both proportional to 1/a 4 , a being the scale factor. A series expansion is worked out for the scalar expansion under the condition that the Casimir influence is small. Close to the Big Rip singularity the Casimir term has however to fade away and we obtain the same singular behavior for the scalar expansion, the scale factor, and the energy density, as in the Casimir-free viscous case.