CuO-TiO2 nanocomposites were successfully synthesized using the C. benghalensis plant extracts. The effect of the composition of CuO to TiO2 on the morphological, optical, electrochemical, and photodegradation efficiency in the composites was studied. SEM, XRD, UV-vis, FTIR, TGA, BET, and CV were used to characterize these materials. The XRD data reported the tenorite structure of the CuO and the anatase phase of the TiO2. SEM showed the spherical morphologies for all the CuO-TiO2 NPs, and these were also mesoporous in nature, as depicted by BET. The voltammogram of the CuO-TiO2 30/70 electrode showed a higher response current density compared to the other two samples, suggesting a higher specific capacitance. Upon testing the photocatalytic efficiencies of the CuO-TiO2 nanocomposites against methylene blue (MB), ciprofloxacin (CIP), and sulfisoxazole (SSX), the highest degradation of 94% was recorded for SSX using the CuO-TiO2 30/70 nanocomposites. Hydroxyl radicals were the primary species responsible for the photodegradation of SSX, and the material could be reused once. The most active species in the photodegradation of SSX has been identified as OH•. From this study, it can be noted that the CuO-TiO2 nanocomposites were more selective toward the degradation of antibiotics (sulfisoxazole and ciproflaxin) as compared to dyes (methylene blue).