A metal-free process has been developed for the sustainable synthesis of medicinally important sulfonylureas in one pot via the direct reaction of sulfonamides with amides in green solvent (DMC). The reaction proceeded efficiently at room temperature, and the products were obtained in good to excellent yields. The use of readily accessible, inexpensive, and environmentally benign starting materials and reagents, metal-free mild reaction conditions, wide substrate scope, tolerance to air and moisture, operational simplicity, and good atom economy are the salient features of this reaction protocol. Gram-scale synthesis of antidiabetic drugs tolbutamide and chlorpropamide in excellent yields further revealed the practical utility of this procedure. Additionally, the synthetic value of this straightforward method is showcased by the late-stage modification of drug molecules, including drug−drug conjugation with good yields. Preliminary mechanistic studies indicated the in situ generation of an isocyanate intermediate, which further reacts with sulfonamide to form sulfonylurea. As compared to other related methods reported for sulfonylurea synthesis, the current method obviates the requirement of traditional multistep protocols involving isolation of hazardous isocyanates and avoids the use of toxic phosgene.