Several strategies have been researched over the last few years for light generation and amplification in silicon. One of the most promising one is based on silicon nanocrystals (Si NCs) with the aim of taking advantage of the reduced dimensionality of the nanocrystalline phase (1-5 nm in size) where quantum confinement, band folding, and surface effects play a crucial role [1,2]. Indeed, it has been found that the Si NC bandgap increases with decrease in size and a photoluminescence (PL) external efficiency in excess of 23% is obtained [3]. Si NC-based LED with high efficiency have been obtained by using Si NC active layers [4] and achieving separate injection of electrons and holes [5]. Moreover, optical gain under optical pumping has been already demonstrated in a large variety of experimental conditions [6][7][8][9][10][11].After the initial impulse given by the pioneering work of Canham on photoluminescence from porous Si [12], nanostructured silicon has received extensive attention. This activity is mainly centered on the possibility of getting relevant optoelectronic properties from nanocrystalline Si. The huge efforts made toward matter manipulation at the nanometer scale have been motivated by the fact that desirable properties can be generated by just changing the system dimension and shape. Investigation of phenomena such as the Stokes shift (difference between absorption and emission energies), the PL emission energy versus nanocrystals size, the doping properties, the radiative lifetimes, the nonlinear optical properties, the quantum-confined Stark effect (QCSE), and so on can give a fundamental contribution to the understanding of how the optical response of such systems can be tuned. A considerable amount of work has been done on excited Si NCs [2, 13-23], but a clear understanding of some aspects is still lacking. The question of surface effects, in particular oxidation, has been addressed in the last few years. Both theoretical calculations and experimental observations have been applied to investigate the possible active role of the interface on the optoelectronic properties of Si NCs. Different models have been proposed: Baierle et al. [24] have considered the role of the surface geometry distortion of small hydrogenated Si clusters in the excited state.