The inclusion of transition metal elements within metal–organic frameworks (MOFs) is considered one of the most promising approaches for enhancing the catalytic capability of MOFs. In this study, MOF-253 containing bipyridine coordination sites is investigated for possible transition metal chelation, and a consequent possible CO2 reduction mechanism in the formation of formic acid. All transition metal elements of the third, fourth and fifth periods except hafnium and the lanthanide series are considered using density functional theory calculations. Two distinct types of CO2 reduction mechanisms are identified: (1) the five-coordination Pd center, which promotes formic acid generation via an intramolecular proton transfer pathway; (2) several four-coordination metal centers, including Mn, Pd, and Pt, which generate formic acid by means of heterolytic hydrogen activation. The MOF-253 environment is found to promote beneficial steric hindrance, and to constrain metal–ligand orientation, which consequently facilitates the formation of formic acid, particularly with the tetrahedral Mn center at high-spin electronic state.