In indoor visible light communication (VLC) and visible light positioning (VLP) systems, the performance of conventional orthogonal frequency-division multiplexing (OFDM) schemes is often compromised due to the nonlinear characteristics and limited modulation bandwidth of light-emitting diodes, the multipath effect in enclosed indoor environments, and the relative positions of transmitters and receivers. This paper proposes an OFDM scheme based on the fractional Fourier transform (FRFT) to address these issues, demonstrating promising results when applied to indoor VLC and VLP systems. The FRFT, a generalization of the conventional Fourier transform (FT) in the fractional domain, captures information in both the time and frequency domains, offering greater flexibility than the FT. In this paper, we first introduce the computation method of the reality-preserving FRFT for an intensity modulation/direct detection VLC system and integrate it with OFDM to optimize system performance. By adopting FRFT-OFDM under the optimal fractional order, we enhance both the bit error ratio (BER) performance and positioning accuracy. Simulation results reveal that the FRFT-OFDM scheme with an optimized fractional order significantly improves the BER and positioning accuracy compared to the FT-OFDM scheme across most receiver positions within the indoor observation plane. For communication, the FRFT-OFDM scheme achieves over 6 dB Eb/N0 gain compared to the FT-OFDM scheme at a BER of 3×10−4 when the receiver is positioned at most locations in the room. For positioning, the FRFT-OFDM scheme enhances positioning accuracy by more than 1 cm relative to the FT-OFDM scheme at most locations in the room. Notably, both systems maintain the same computational complexity and spectral efficiency.