The asymmetric cross-coupling of unsaturated bonds, hampered by their comparable polarity and reactivity, as well as the scarcity of efficient catalytic systems capable of diastereo-and enantiocontrol, presents a significant hurdle in organic synthesis. In this study, we introduce a highly adaptable photochemical cobalt catalysis framework that facilitates chemoand stereoselective reductive cross-couplings between common aldehydes with a broad array of carbonyl and iminyl compounds, including N-acylhydrazones, aryl ketones, aldehydes, and α-keto esters. Our methodology hinges on a synergistic mechanism driven by photoredox-induced single-electron reduction and subsequent radical−radical coupling, all precisely guided by a chiral cobalt catalyst. Various optically enriched β-amino alcohols and unsymmetrical 1,2-diol derivatives (80 examples) have been synthesized with good yields (up to 90% yield) and high stereoselectivities (up to >20:1 dr, 99% ee). Of particular note, this approach accomplishes unattainable photochemical asymmetric transformations of aldehydes with disparate carbonyl partners without reliance on any external photosensitizer, thereby further emphasizing its versatility and cost-efficiency.