Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (i.e. affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12, and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3, and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified
TBX6
as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.