Neonatal tectal lesions in hamsters result in the elimination of a major central target of retinal axons, massively denervate the lateral posterior nucleus of the thalamus (LP), and lead to a marked increase of the retino-LP projection. In such animals, retino-LP axons show all of the normally-occurring terminal types. In addition, large clusters of varicosities, whose tubular configuration resembles the major type of tecto-LP terminals observed in normal animals, are also noted if the tectal lesion is made on the day after birth (P1). If, however, the neonatal lesion occurs on P5 rather than on P1, terminals resembling normal tecto-LP endings are rarely observed; rather, the distribution and morphology of retino-LP terminals bear a greater resemblance to those seen in normal hamsters, but the size and complexity of the terminals, particularly those that form string-like arrangements, is significantly increased. Our findings suggest that the altered morphology of some abnormally induced retino-LP terminals may be orchestrated by target-associated signals. However, there are age-related limitations on the degree to which afferent systems can vary their terminal morphology; these restrictions may derive from the target, or may be a function of intrinsic changes within the cells of origin of the afferent fibers.