UV-absorbing rhodopsins are essential
for UV vision and sensing
in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins,
which bind a protonated retinal Schiff base for light absorption,
UV-absorbing rhodopsins bind an unprotonated retinal Schiff base.
Thus far, the photoreaction dynamics and mechanisms of UV-absorbing
rhodopsins have remained essentially unknown. Here, we report the
complete excited- and ground-state dynamics of the UV form of histidine
kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond
stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy,
covering time scales from femtoseconds to milliseconds. We found that
energy-level ordering is inverted with respect to visible-absorbing
rhodopsins, with an optically forbidden low-lying S1 excited
state that has Ag– symmetry and a higher-lying UV-absorbing
S2 state of Bu+ symmetry. UV-photoexcitation
to the S2 state elicits a unique dual-isomerization reaction:
first, C13C14 cis–trans isomerization occurs during S2–S1 evolution
in <100 fs. This very fast reaction features the remarkable property
that the newly formed isomer appears in the excited state rather than
in the ground state. Second, C15N16 anti–syn isomerization occurs on the S1–S0 evolution to the ground state in 4.8 ps. We detected two
ground-state unprotonated retinal photoproducts, 13-trans/15-anti (all-trans) and 13-cis/15-syn, after relaxation to the ground
state. These isomers become protonated in 58 μs and 3.2 ms,
respectively, resulting in formation of the blue-absorbing form of
HKR1. Our results constitute a benchmark of UV-induced photochemistry
of animal and microbial rhodopsins.