Walking direction conveyed by biological motion (BM) cues, which humans are highly sensitive to since birth, can elicit involuntary shifts of attention to enhance the detection of static targets. Here, we demonstrated that such intrinsic sensitivity to walking direction could also modulate the direction perception of simultaneously presented dynamic stimuli. We showed that the perceived direction of apparent motion was biased towards the walking direction even though observers had been informed in advance that the walking direction of BM did not predict the apparent motion direction. In particular, rightward BM cues had an advantage over leftward BM cues in altering the perception of motion direction. Intriguingly, this perceptual bias disappeared when BM cues were shown inverted, or when the critical biological characteristics were removed from the cues. Critically, both the perceptual direction bias and the rightward advantage persisted even when only local BM cues were presented without any global configuration. Furthermore, the rightward advantage was found to be specific to social cues (i.e., BM), as it vanished when non‐social cues (i.e., arrows) were utilized. Taken together, these findings support the existence of a specific processing mechanism for life motion signals and shed new light on their influences in a dynamic environment.