Social behavior can influence physiological systems dramatically yet the sensory
cues responsible are not well understood. Behavior of male African cichlid fish,
Astatotilapia burtoni, in their natural habitat suggests
that visual cues from conspecifics contribute significantly to regulation of
social behavior. Using a novel paradigm, we asked whether visual cues alone from
a larger conspecific male could influence behavior, reproductive physiology and
the physiological stress response of a smaller male. Here we show that just
seeing a larger, threatening male through a clear barrier can suppress dominant
behavior of a smaller male for up to 7 days. Smaller dominant males being
“attacked” visually by larger dominant males through a clear barrier
also showed physiological changes for up to 3 days, including up-regulation of
reproductive- and stress-related gene expression levels and lowered plasma
11-ketotestesterone concentrations as compared to control animals. The smaller
males modified their appearance to match that of non-dominant males when exposed
to a larger male but they maintained a physiological phenotype similar to that
of a dominant male. After 7 days, reproductive- and stress- related gene
expression, circulating hormone levels, and gonad size in the smaller males
showed no difference from the control group suggesting that the smaller male
habituated to the visual intruder. However, the smaller male continued to
display subordinate behaviors and assumed the appearance of a subordinate male
for a full week despite his dominant male physiology. These data suggest that
seeing a larger male alone can regulate the behavior of a smaller male but that
ongoing reproductive inhibition depends on additional sensory cues. Perhaps,
while experiencing visual social stressors, the smaller male uses an
opportunistic strategy, acting like a subordinate male while maintaining the
physiology of a dominant male.