Among non-human primates, macaques are recognized for thriving in a wide range of novel environments. Previous studies show macaque's affinity for new information. However, little is known about how information-seeking manifests in their spatial navigation pattern in ambiguous foraging terrains, where the location and distribution of the food are unknown. We investigated the spatial pattern of foraging in free-moving macaques in an ambiguous terrain, lacking sensory cues about the reward distribution. Rewards were hidden in a uniform grid of woodchip piles spread over a 15 sqm open terrain and spatially distributed according to different patchy distributions. We observed Levy-like random walks in macaques' spatial search pattern, balancing relocation effort with exploration. Encountering rewards altered the foraging path to favor the vicinity of discovered rewards temporarily, without preventing longer-distance travels. These results point toward continuous exploration, suggesting that explicit information-seeking is a part of macaques' foraging strategy. We further quantified the role of information seeking using a kernel-based model, combining a map of ambiguity, promoting information seeking, with a map of discovered rewards and a map of proximity. Fitting this model to the foraging paths of our macaques revealed individual differences in their relative preference for information, reward, or proximity. The model predicted that a balanced contribution of all three factors performs and adapts to an ambiguous terrain with semi-scattered rewards, a prediction we confirmed using further experimental evidence. We postulate an explicit role for seeking information as a valuable entity to reduce ambiguity in macaques' foraging strategies, suggesting an ecologically valid way of foraging ambiguous terrains.