Magnetic Resonance Elastography (MRE) is a technique for quantifying the acoustic response of biological tissues to propagating waves applied at low frequencies in order to evaluate mechanical properties. Application-specific MRE drivers are typically required to effectively deliver shear waves within the tissue of interest. Surface MRE drivers with transversely oriented vibrations have often been used to directly generate shear waves. These drivers may have disadvantages in certain applications, such as poor penetration depth and inflexible orientation. Therefore, surface MRE drivers with longitudinally oriented vibrations are used in some situations. The purpose of this work was to investigate and optimize a longitudinal driver system for MR elastography applications. It is shown that a cone-like hemispherical distribution of shear waves are generated by these drivers and the wave propagation is governed by diffraction in the near field. Using MRE visualization of the vector displacement field, the properties of the shear wave field created by longitudinal MRE drivers of various sizes were studied to identify optimum shear wave imaging planes. The results offer insights and improvements in both experimental design and imaging plane selection for 2-D MRE data acquisition.