Fetal alcohol syndrome (FAS) is a severe manifestation of embryonic exposure to ethanol. It presents with characteristic defects to the face and organs, including mental retardation due to disordered and damaged brain development. Fetal alcohol spectrum disorder (FASD) is a term used to cover a continuum of birth defects that occur due to maternal alcohol consumption, and occurs in approximately 4% of children born in the United States. With 50% of child-bearing age women reporting consumption of alcohol, and half of all pregnancies being unplanned, unintentional exposure is a continuing issue 2 . In order to best understand the damage produced by ethanol, plus produce a model with which to test potential interventions, we developed a model of developmental ethanol exposure using the zebrafish embryo. Zebrafish are ideal for this kind of teratogen study [3][4][5][6][7][8] . Each pair lays hundreds of eggs, which can then be collected without harming the adult fish. The zebrafish embryo is transparent and can be readily imaged with any number of stains. Analysis of these embryos after exposure to ethanol at different doses and times of duration and application shows that the gross developmental defects produced by ethanol are consistent with the human birth defect. Described here are the basic techniques used to study and manipulate the zebrafish FAS model.
Video LinkThe . Embryos are maintained at 28 °C for the desired length of time. After the desired length of ethanol exposure, the ethanol-water solution is removed and replaced with three washes of regular zebrafish water and maintained for the desired length of time. The specificity of the defect depends on the time of onset, the dose, and the length of the pulse of ethanol.
Collection of Embryos for RNA, in situ Hybridization, Antibody, and Cartilage Staining1. To collect mRNA for qPCR, age matched embryos are collected in eppendorf tubes. After removal of the zebrafish water, lysis buffer with TCEP is added. A motorized pulverizer is used to physically dissociate the embryos in the lysis solution. This is then passed through a preclear column, which removes any undissociated large pieces. The resulting solution contains all the macromolecules released by the lysis process. RNA is then extracted by running this solution on a column, followed by washes and DNAse treatment. Elution is then performed using either water or an elution solution provided by the manufacturer (5'-Prime). The RNA can be converted to cDNA using standard techniques for qPCR or used in microarray analysis. 2. For in situ hybridization and antibody staining, embryos from 6 to 24 hpf were fixed in 4% paraformaldehyde overnight at 4 °C. This is followed by 3 washes in PBS + 0.1% Tween (PBT), to keep embryos from sticking together. Embryos are then transferred through a series of 3 methanol:PBT washes into 100% methanol, at which point they can be stored at -20 °C. These embryos can be used for in situ hybridization or antibody staining. Some antibodies do not work after methanol tre...