Investigations into the structures of gas hydrates, the mechanisms of formation, and dissociation with modern instruments on the experimental aspects, including Raman, X-ray, XRD, X-CT, MRI, and pore networks, and numerical analyses, including CFD, LBM, and MD, were carried out. The gas hydrate characteristics for dissociation and formation are multi-phase and multi-component complexes. Therefore, it was important to carry out a comprehensive investigation to improve the concept of mechanisms involved in microscale porous media, emphasizing micro-modeling experiments, 3D imaging, and pore network modeling. This article reviewed the studies, carried out to date, regarding conditions surrounding hydrate dissociation, hydrate formation, and hydrate recovery, especially at the pore-scale phase in numerical simulations. The purpose of visualizing pores in microscale sediments is to obtain a robust analysis to apply the gas hydrate exploitation technique. The observed parameters, including temperature, pressure, concentration, porosity, saturation rate, and permeability, etc., present an interrelationship, to achieve an accurate production process method and recovery of gas hydrates.