Introduction and hypothesis
Polypropylene (PP) mesh for the treatment of pelvic organ prolapse (POP) has raised substantial concerns over long-term complications, leading to its ban in multiple countries. In response, emerging materials are being explored as alternatives for prolapse surgery. Preclinical animal models have historically played a pivotal role in validating medical devices, prior to clinical trials. Successful translation of these materials necessitates the identification of suitable animal models that replicate the female human pelvis and its biomechanical properties. Preclinical in vivo testing assesses the safety of surgical mesh and treatment efficacy in preventing POP recurrence.
Methods
The research critically reviews animal models used for preclinical pelvic mesh testing over the last decade and proposes a promising model for future preclinical studies.
Results
Rats were the most common mammal used for toxicity and biocompatibility investigations through abdominal implantation. Although non-human primates serve as a gold standard for efficacy testing, ethical considerations limit their use owing to their close biological and cognitive resemblance to humans. Consequently, sheep were the most preferred large animal model owing to their reproductive system similarities and propensity for spontaneous POP following parity.
Conclusion
The study contributes valuable insights into the selection of appropriate animal models for preclinical pelvic mesh testing, offering guidance that is crucial for enhancing the safety and efficacy of novel surgical interventions in the treatment of POP.