a b s t r a c tHeatline visualization technique is used to understand heat transport path in an inclined non-uniformly heated enclosure filled with water based CuO nanofluid. The cavity has square cross-section and it is nonuniformly heated from a wall and cooled from opposite wall while other walls are adiabatic. The governing equations which are continuity, momentum and energy equations are solved using finite volume method. The dimensionless heatfunction for nanofluid heat flow is defined and solved to determine heatline patterns. Calculations were performed for Rayleigh numbers of 10 3 , 10 4 and 10
5, inclination angle of 0°, 30°, 60°and 90°, and nanoparticle fraction of 0, 0.02, 0.04, 0.06, 0.08 and 0.1. It is observed that heat transfer in the cavity increases by adding nanoparticles. The rate of increase is greater for the enclosures with low Rayleigh number. Visualization of heatline is successfully applied to nanoparticle convective flows. Based on the heatline patterns, three heat transfer regions are observed and discussed in details.