Automation in today's world supports human operators to accomplish several tasks in limited time. With more advanced automation and autonomous systems, the humans' role is shifting from hands-on operational tasks to supervisory tasks. In complex environments such as air traffic control, supervisory tasks become difficult to manage during unexpected situations as the operator needs to have a clear understanding of various resolution strategies and their consequences and make decisions about them in a limited amount of time (i.e. within a couple of minutes). In such environments, interface designers must carefully consider how information should be presented to the operators. An improper way of presenting information could, wastefully consume operators' cognitive resources resulting in inefficient decision-making and an increased risk of failure.By designing ecological visual analytics interfaces, this thesis addresses the problem of real-time decision-making in the domain of air traffic control. The aim of this thesis has been to apply ecological design theories to the design and evaluation of visual representations to better support controllers' analytical capabilities and decision-making. Four novel visual analytics interfaces were designed, developed, i