Kinesins are a superfamily of molecular motors that undertake ATP-dependent microtubule-based movement or regulate microtubule dynamics. Plasmodium species, which cause malaria and kill hundreds of thousands annually, encode 8-9 kinesins in their genomes. Of these, two - kinesin-8B and kinesin-8X - are canonically classified as kinesin-8s, which in other eukaryotes typically modulate microtubule dynamics. Unexpectedly, Plasmodium kinesin-8B is required for development of the flagellated male gamete in the mosquito host, and its absence completely blocks parasite transmission. To understand the molecular basis of kinesin-8B's essential role, we characterised the in vitro properties of the kinesin-8B motor domains from P. berghei and P. falciparum. Both motors drive plus-end directed ATP-dependent microtubule gliding, but also catalyse ATP-dependent microtubule depolymerisation. We determined the microtubule-bound structures of these motors using cryo-electron microscopy. P. berghei and P. falciparum kinesin-8B exhibit a very similar mode of microtubule interaction, in which Plasmodium-distinct sequences at the microtubule-kinesin interface influence motor function. Intriguingly, however, P. berghei kinesin-8B exhibits a non-canonical structural response to ATP analogue binding such that neck linker docking is not induced. Nevertheless, the neck linker region is absolutely required for motility and depolymerisation activities of these motors. Taken together, these data suggest that the mechanochemistry of Plasmodium kinesin-8Bs has been functionally tuned to efficiently contribute to flagella formation.