Hydrophobic storage neutral lipids are stably preserved in specialized organelles termed oil bodies in the aqueous cytosolic compartment of plant cells via encapsulation with surfactant molecules including phospholipids and integral proteins. To date, three classes of integral proteins, termed oleosin, caleosin, and steroleosin, have been identified in oil bodies of angiosperm seeds. Proposed structures, targeting traffic routes, and biological functions of these three integral oil-body proteins were summarized and discussed. In the viewpoint of evolution, isoforms of oleosin and caleosin are found in oil bodies of pollens as well as those of more primitive species; moreover, caleosin-and steroleosin-like proteins are also present in other subcellular locations besides oil bodies. Technically, artificial oil bodies of structural stability similar to native ones were successfully constituted and seemed to serve as a useful tool for both basic research studies and biotechnological applications.