Estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), and Ki67 are four crucial biomarkers used in the clinical diagnosis of breast cancer. Accurate detection of these biomarkers is essential for an effective diagnosis and treatment. MOF-based micronano motors (MOFtors) are promising for various applications, including environmental remediation, targeted nanosurgery, and biomarker detection. This paper presents a clinically feasible diagnostic electrochemical micronano motor biosensor, built on a miniature swimmer, for the multiplex detection and grading of breast cancer biomarkers. We designed a biosensor, named MOFtor-MSEM, incorporating aptamers and antibodies functionalized on SiO 2 @Co−Fe-MOF, which acts as a miniature swimmer in solution. The SiO 2 @Co−Fe-MOF serves as the body, while complementary double-chain-linked antibodies function as paddles. In a homogeneous solution, when a positive voltage is applied to the working electrode, the electrostatic interaction between the neutral SiO 2 @Co−Fe-MOF and the negatively charged complementary double-linked antibody causes the antibody to move toward the electrode and then regress due to water resistance. This back-and-forth motion propels the miniature swimmer, enabling it to move the target analyte through the solution. The sensor features an automatic "sample-amplifying signal-output" process, achieving simultaneous signal amplification and output of four electrochemical signals on a single nanomaterial, a significant challenge in electrochemical sensing. The biosensor boasts a short detection time of 40 min, compared to approximately 1 week for current clinical tissue testing. Additionally, the bioplatform selectively detects HER2, ER, Ki67, and PR in the range of 0−1500 pg/mL, with detection limits of 0.01420, 0.03201, 0.01430, and 0.01229 pg/mL, respectively.