The search for a selective and efficient anticancer agent for treating all neoplastic disease has yet to deliver a universally suitable compound(s). The majority of established anticancer drugs either are nonselective or lose their efficacy because of the constant mutational changes of malignant cells. Until recently, a largely neglected target for potential anticancer agents was the mitochondrion, showing a considerable promise for future clinical applications. Vitamin E (VE) analogs, epitomized by ␣-tocopheryl succinate, belong to the group of "mitocans" (mitochondrially targeted anticancer drugs). They are selective for malignant cells, cause destabilization of their mitochondria, and suppress cancer in preclinical models. This review focuses on our current understanding of VE analogs in the context of their proapoptotic/anticancer efficacy and suggests that their effect on mitochondria may be amplified by modulation of alternative pathways operating in parallel. We show here that the analogs of VE that cause apoptosis (which translates into their anticancer efficacy) generally do not possess antioxidant (redox) activity and are prototypical of the mitocan group of anticancer compounds. Therefore, by analogy to Oscar Wilde's play The Importance of Being Earnest, we use the motto in the title "the importance of being redox-silent" to emphasize an essentially novel paradigm for cancer therapy, in which redoxsilence is a prerequisite property for most of the anticancer activities described in this communication.Despite advances in molecular medicine, the third millennium has borne witness to neoplastic disease becoming a major cause for mortality in developed countries. Moreover, fast-growing economies in countries like India and China are likely to be severely affected by cancer in a decade or so as a result of heavy industrialization. Certain types of cancer, such as malignant mesothelioma (MM), seem to remain beyond the realms of treatment. In many other cases, mutations arise in the tumors, seriously compromising the outcome of the therapy. For example, in breast cancer, in which a high frequency of overexpression of the tyrosine receptor kinase erbB2 occurs, this is often associated with resistance to chemotherapy (Xia et al., 2006). We are therefore in need of treatment modalities that would overcome these problems and that are efficient, selective, and readily available to all Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org. doi:10.1124/mol.106.030122.ABBREVIATIONS: MM, malignant mesothelioma; BH, Bcl-2 homology; DHFR, dihydrofolate reductase; DR, death receptor; ERK, extracellular signal-regulated protein kinase; FLIP, Fas-associated death domain-like interleukin-1-converting enzyme-inhibitory protein; IAP, inhibitor of apoptosis protein; IB, inhibitory subunit of nuclear factor B; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MPTP, mitochondrial permeability transition pore; MTX, methotrexate; NFB, nuclear factor-B; O...