Abstract. Vitamin Ks (VKs) are fat-soluble quinone compounds known to have various bioactivities. This review describes the inflammatory effects of VKs and their related quinone derivatives based on DNA polymerase (pol) inhibition. VK 3 , but not VK 1 or VK 2 (=MK-4), inhibited the activity of human pol γ, which is the DNA replicative pol in mitochondria. Of the intermediate compounds between VK 2 and VK 3 (namely MK-3, MK-2 and MK-1), MK-2 was the strongest inhibitor of mammalian pols α, κ and λ, which belong to the B-, Y-and X-families of pols, respectively. Among the VK 3 based quinone derivatives, such as 1,4-naphthoquinone (NQ), 2-dimethyl-1,4-naphthoquinone (1,2-dimethyl-NQ), 1,4-benzoquinone (BQ), 9,10-anthraquinone (AQ) and 5,12-naphthacenequinone (NCQ), NQ was the strongest inhibitor of mammalian pols α and λ, in particular, DNA repair-related pol λ. Among the all compounds tested, NQ displayed the strongest suppression of tumor necrosis factor (TNF)-α production induced by lipopolysaccharide (LPS) in a cell culture system using RAW264.7 mouse macrophages. NQ also suppressed the expression of pol λ protein in these cells, after LPS-treated RAW264.7 cells were stimulated to induce pol λ expression. In an in vivo mouse model of LPS-evoked acute inflammation, intraperitoneal injection of NQ into mice suppressed TNF-α production in peritoneal macrophages and serum. In an in vivo colitis mouse model induced using dextran sulfate sodium (DSS), NQ markedly suppressed DSS-evoked colitis. The promising anti-inflammatory candidates based on the inhibition of DNA repair-related pols, such as pol λ, by VKs quinone derivatives, such as NQ, are discussed.