A glass and a rhenanite-wollastonite glass-ceramic were synthesized with the qualitative composition Na2O-CaO-SiO2-P2O5. Both materials were prepared by reaction sintering under isostatic pressure (RSIP) using powder mixtures. Solid state reactions were complete within a few hours at 950 degrees C under modest pressure. Formation of the glass and crystalline phases was driven by an intermediate, reactive, low viscosity Na2O-SiO2 phase. A reaction mechanism is suggested. Porous materials were obtained with two ranges of pore sizes: 100-200 microm and < or =5 microm in diameter. The glass and the glass-ceramic were corroded in simulated body fluid at 37 degrees C. The evolution of surface features was studied. Gel layers formed on both materials. Corrosion was fastest inside the pores. Microcrystals of apatite were identified by crystal structure analysis and by chemical analysis. During corrosion of the glass-ceramic, rhenanite most likely was converted into apatite. Comparison of these results with published information suggests that the glass and glass-ceramic are bioactive. We suggest that RSIP can be used (a) to control the surface porosity and pore size of bioactive implants, thereby increasing the stability of tissue/implant interfaces; (b) to make glasses and glass-ceramics with new properties; and (c) to make near net-shape materials.