2016
DOI: 10.1007/978-81-322-2656-7_19
|View full text |Cite
|
Sign up to set email alerts
|

VLSI Implementation and Analysis of Kidney Stone Detection from Ultrasound Image by Level Set Segmentation and MLP-BP ANN Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
3
3

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 16 publications
0
3
0
2
Order By: Relevance
“…The design is highly protected and the less complex system comprises, the cloud architecture, system handling for complexity and management of cloud access control. This system is performed for multiple users with various cloud models with high security and recovery of the data, segmentation of data is discussed in [32]. As depicted in Fig.…”
Section: B Affine Coordinatesmentioning
confidence: 99%
“…The design is highly protected and the less complex system comprises, the cloud architecture, system handling for complexity and management of cloud access control. This system is performed for multiple users with various cloud models with high security and recovery of the data, segmentation of data is discussed in [32]. As depicted in Fig.…”
Section: B Affine Coordinatesmentioning
confidence: 99%
“…3. The architecture of the neural network [20] Алгоритм в основном классифицировал изображение с камнями и без с помощью классификатора, а затем изображения с камнями подвергались дополнительному сегментированию для определения локализации камней. Исследование показало, что кластеризация «multi kernel» k-средних (гибридная линейная и квадратичная модель) достигла точности 99,6% [19].…”
Section: определение локализации конкремента по данным узи и ктunclassified
“…Для детекции камней Viswanath и соавт. использовали ансамбль архитектур -многослойный перцептрон Румельхарта [20]. Обучение нейросети проводилось на ретроспективной базе данных 500 пациентов с предварительной подготовкой УЗИ изображений с использованием набора фильтров.…”
Section: определение локализации конкремента по данным узи и ктunclassified
“…Artificial neural networks (ANNs) are an important area of artificial intelligence (AI) used to perform several tasks, such as classification [1][2][3][4], pattern recognition [5][6][7][8], communications [9,10], control systems [11,12], prediction [13,14], among others. An ANN models a biological neural network employing a collection of nodes called artificial neurons, connected by edges to transmit signals like the synapses in a brain; during its transmission, the signal value changes according to the weight of the edges, adjusted by a learning process.…”
Section: Introductionmentioning
confidence: 99%
“…An attractive solution is the development of hardware neuronal networks (HNN) in Field-Programmable Gate Arrays (FPGAs) [15][16][17][18][19][20][21]. In this regard, the FPGA-based implementation of AFs in HNN is one of the challenges for embedded system design according to recent studies; this is because the AF implementations require low hardware resources and low power consumption [1,2,5,12,[22][23][24][25]. Currently, the most common non-linear functions for ANNs are the Sigmoid [11,[26][27][28][29][30][31][32] ans TanhAFs [22,32,33].…”
Section: Introductionmentioning
confidence: 99%