In this paper, a long-stroke parallel compliant tip-tilt-piston micropositioning stage driven by voice coil motors (VCMs) is proposed. The stage is equipped with three sets of driving arms, which include a spherical hinge, VCM, and parallelogram guide mechanism, evenly spaced at 120° intervals. The spherical hinge is composed of orthogonal leaf-spring beams, and the VCM is embedded into the parallelogram mechanism to form a compact design. The compliance matrix method and the geometric method facilitated the determination of compliance in all six degree-of-freedom directions of the spherical hinge and the derivation of kinematic equations for decoupling the motion of the stage. In addition, finite element analysis was utilized to determine the maximum stroke and stress of the stage. To validate the proposed design, a stage prototype was constructed and subjected to experimental testing. Furthermore, a feedback controller was designed, integrating proportional integral controller, notch filter, and sliding mode controller feedforward. The experimental results indicate that the stage can achieve a long stroke of ±50.75 mrad × ±44.2 mrad × ±4.425 mm, with the natural frequencies in the three-axis direction of 22.3 × 25.5 × 25.5 Hz3. In addition, the maximum relative tracking error was maintained below 5.25%, highlighting the effectiveness of the control technique in achieving a high tracking performance.