2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2014
DOI: 10.1109/icassp.2014.6855137
|View full text |Cite
|
Sign up to set email alerts
|

Voice conversion based on Non-negative matrix factorization using phoneme-categorized dictionary

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
51
0
1

Year Published

2014
2014
2018
2018

Publication Types

Select...
5
1
1

Relationship

2
5

Authors

Journals

citations
Cited by 38 publications
(52 citation statements)
references
References 16 publications
0
51
0
1
Order By: Relevance
“…First, we assume that our NMF approach is advantageous in that it results in a more natural-sounding converted voice compared to conventional statistical VC. The natural sounding converted voice in NMF-based VC has been confirmed [5]. Wu et al [35] applied a spectrum compression factor to NMF-based VC to improve conversion quality.…”
Section: Related Workmentioning
confidence: 93%
“…First, we assume that our NMF approach is advantageous in that it results in a more natural-sounding converted voice compared to conventional statistical VC. The natural sounding converted voice in NMF-based VC has been confirmed [5]. Wu et al [35] applied a spectrum compression factor to NMF-based VC to improve conversion quality.…”
Section: Related Workmentioning
confidence: 93%
“…In [15], we proposed multimodal NMF-based VC to enhance the noise robustness of our method. The natural-sounding converted voice in NMF-based VC was confirmed in [16]. Wu et al [17] applied a spectrum compression factor to NMF-based VC and improved the conversion quality.…”
Section: Related Workmentioning
confidence: 93%
“…Although the parallel dictionaries are aligned by DTW, there still seems to be a mismatch of alignment. These mismatch degrades the performance of the exemplar-based VC [16]. Second, we assume that the activity matrix contains not only phonetic information but also speaker information.…”
Section: Difference Between Parallel Dictionariesmentioning
confidence: 99%
See 1 more Smart Citation
“…Ce paradigme de conversion de la voix présente cependant des limites importantes et bien connues : les effets de sur-apprentissage et de moyennage relatifsà la modélisation statistique (Toda et al, 2007) qui conduità une dégradation de la voix convertie, et la nécessité de construire des bases de données parallèles extrêmement restrictives et non souhaitées pour des applications réelles. Pour répondreà ces limitations, des algorithmes de conversionà partir d'unités -ou d'exemples réels -ontété récemment proposés (Sündermann et al, 2006;Wu et al, 2013;Aihara et al, 2014;Jin et al, 2016). Tout d'abord, la conversion vocaleà partir de sélection et de concaténation d'unités spectrales présente l'avantage de préserver les caractéristiques et la dynamique d'origine de la voix cible dans la mesure où elle repose uniquement sur l'utilisation d'unités vocales réelles.…”
Section: Introductionunclassified