Sterculia diversifolia, widely distributed in Jordan as an ornamental plant, is a synonoum for Brachychiton populneus. Phytochemical studies examining the volatile chemicals in Sterculia diversifolia leaves are limited, despite the rising demand for their numerous applications. Furthermore, it was only recently that a report described the friendly synthesis of silver nanoparticles (AgNPs) using aqueous extract derived from Brachychiton populneus leaves. Therefore, AgNPs were produced using either aqueous plant extracts (AgWPE) or ethanolic plant extracts (AgEPE), and Shimadzu GC-MS equipment was used to detect volatile compounds in the ethanolic leaf extracts. GC-MS profile of leaf ethanolic extracts of the Jordanian chemotypes of S. diversifolia revealed the existence of major components: (3β)-Lup-20(29)-en-3-ol acetate (30.97%) and 1-octadecyne (24.88). Other compounds are squalene (7.19%), germanicol (6.23), dl-α-tocopherol (5.24), heptacosane (4.41), phytol (3.54) and pentacosane (2.89). According to published studies, these reported chemicals have numerous uses, including as animal feed, vitamin precursors, possible eco-friendly herbicides, antioxidants, and anti-inflammatory agents. Aqueous extracts of S. diversifolia leaves had total phenolic of 5.33 mg GAE/g extract and flavonoid contents of 64.88 mg QE/g extract, respectively. The results indicated the contribution of phenolic and flavonoids to this plant’s anti-inflammatory and antioxidant properties. The reduction in AgNO3 to AgNPs using S. diversifolia leaf extracts was confirmed by the change in solution color from colorless to dark black. Further characterization was attempted by X-ray diffraction, Malvern zeta-sizer and scanning electron microscope. The efficacy of synthesized Ag nanoparticles using aqueous or ethanolic plant extract of S. diversifolia against the Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus showed appreciable activity at 25 µg/mL concentration compared to the source plant extracts.