We present halogen, noble gas, and major and trace element compositions of mantle xenoliths from intraplate settings (Eifel, Kilbourne Hole, San Carlos, and Hawaii). The xenoliths show a wide range of halogen elemental ratios, which form two arrays centered on the halogen composition of mid-ocean ridge basalts. The samples on the array toward high I/Cl value have relatively low Cl concentration and low ratios of highly incompatible elements relative to heavy rare earth elements, whereas the samples on the array toward low Br/Cl value have higher Cl concentration and trace elements ratios. The detailed mechanisms to account for these signatures are equivocal at present. However, they are most likely to be related to secondary processes of volatile loss during partial melting and secondary phase formation during interaction with melts. The common primary mid-ocean ridge basalt-like halogen ratios in mantle xenoliths from different parts of the globe indicate that the mantle itself must have a relatively uniform composition over a wide scale. The mantle has maintained its halogen composition over billion year timescales without being affected by I-rich halogens being transported into the mantle. Mass balance calculations suggest that, in order to maintain the I/Cl ratio of the convecting mantle over 2 Gyr, the I/Cl ratio of the subducted halogens must be no more than several times higher than the present-day mantle value.
Plain Language Summary Elemental and isotopic compositions of volatile species such ashalogens, noble gases, hydrogen, and carbon can be used to trace the evolution of these species in the Earth. Halogens are important tracers of subduction recycling of surface volatiles into the mantle: however, there is only limited understanding of halogens in the mantle. Here we provide new halogen data of mantle xenoliths from intraplate settings. The mantle xenoliths show a wide range of halogen elemental ratios, which are expected to be related to later processes after the xenoliths formed. A similar primary halogen component is present in the xenoliths sampled from different localities. This suggests that the mantle has the uniform halogen composition over a wide scale. The halogen composition in the convecting mantle is expected to have remained constant over more than 2 billion years, despite subduction of iodine-rich halogens. We used mass balance calculations to gain understanding into evolution rate of I/Cl ratio in the mantle. Calculations suggest that, in order to maintain the I/Cl ratio of the mantle over 2 Gyr, the I/Cl ratio of the subducted halogens must be no more than several times higher than the present-day mantle value.