Enterococcus faecium SE920, Debaryomyces hansenii FHSCC 253H, Penicillium chrysogenum CECT 20922, producer of the antifungal protein PgAFP, and this protein itself have previously been proposed to control toxigenic molds in dry-cured meat products. However, their effects on the usual microbial population, and the sensory characteristics of these foods, have not yet been evaluated. The aim of this study was to assess the viability of the inoculation of these protective cultures, and their impact on the quality of dry-cured fermented sausages. These microorganisms were co-inoculated with a native desirable population (Penicillium nalgiovense, P. chrysogenum, D. hansenii, and Staphylococcus vitulinus) in a dry-cured fermented sausage (salchichón)-based medium in the presence and absence of PgAFP. Macroscopically, the biocontrol candidates did not produce relevant changes in the growth of the native population, enabling their coexistence. However, PgAFP causes the alteration of the hyphae structure in desirable molds. Thus, PgAFP was discarded for use on the surface of raw dry-cured fermented sausages (salchichón) in the pilot plant. The used biocontrol agents did not negatively affect the physico-chemical parameters of the dry-cured fermented sausages (salchichón) after ripening, which showed the typical volatile profile and odor. Thus, the application of E. faecium SE920, D. hansenii FHSCC 253H, and P. chrysogenum CECT 20922 as protective cultures against toxigenic molds during the ripening of dry-cured fermented sausages does not modify their typical sensorial quality.