In this paper, we study economic growth and its volatility from an episodic perspective. We first demonstrate the ability of the genetic algorithm to detect shifts in the volatility and levels of a given time series. Having shown that it works well, we then use it to detect structural breaks that segment the GDP per capita time series into episodes characterized by different means and volatility of growth rates. We further investigate whether a volatile economy is likely to grow more slowly and analyze the determinants of high/low growth with high/low volatility patterns. The main results indicate a negative relationship between volatility and growth. Moreover, the results suggest that international trade simultaneously promotes growth and increases volatility, human capital promotes growth and stability, and financial development reduces volatility and negatively correlates with growth.