2012
DOI: 10.1016/j.jbankfin.2012.07.012
|View full text |Cite
|
Sign up to set email alerts
|

Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

2
45
0
1

Year Published

2015
2015
2020
2020

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 77 publications
(48 citation statements)
references
References 44 publications
2
45
0
1
Order By: Relevance
“…Only a few recent papers show that VIX can improve option valuation performance. Kaeck and Alexander () use several continuous‐time models with Markov chain Monte Carlo, which takes the VIX term structure into account, and apply these models to option valuation. Yang and Kanniainen () investigate how infinite‐activity variance γ and normal inverse Gaussian increases with affine and nonaffine volatility processes improve returns data fitting and option pricing performance.…”
Section: Introductionmentioning
confidence: 99%
“…Only a few recent papers show that VIX can improve option valuation performance. Kaeck and Alexander () use several continuous‐time models with Markov chain Monte Carlo, which takes the VIX term structure into account, and apply these models to option valuation. Yang and Kanniainen () investigate how infinite‐activity variance γ and normal inverse Gaussian increases with affine and nonaffine volatility processes improve returns data fitting and option pricing performance.…”
Section: Introductionmentioning
confidence: 99%
“…This 4 Because closed-form solutions are typically unavailable, empirical studies of non-affine models are most often based either on pure time-series evidence or are restricted to diagnosing simple volatility contracts such as variance swaps or the VIX index. In recent literature, Kaeck and Alexander (2012) estimate a variety of affine and non-affine models on S&P 500 index returns and the VIX term structure. Christoffersen, Jacobs and Mimouni (2010) advance the estimation of single-factor non-affine models using a particle filter, as discussed below.…”
Section: Introductionmentioning
confidence: 99%
“…A large literature on affine stochastic volatility models has emerged focusing on improving the path-breaking model of Heston (1993): models that allow for jumps in the dynamics of the price of the financial asset, in order to account for large moves such in the case of crashes (Bates, 1996;Bakshi, Cao and Chen, 1997), models allowing that the long-run variance is itself a stochastic process, modeled as a diffusion process or as a discrete state Markov process (Bardgett, Gourier and Leippold, 2013;Kaeck and Alexander, 2012), models that allow for jumps in the dynamics of the variance (Eraker, 2004;Broadie, Chernov and Johannes, 2007), two-factor models that generates stochastic correlation between returns and volatility (Christoffersen, Heston and Jacobs, 2009), or three-factor models with jumps both in the dynamics of the underlying and of the volatility (Andersen, Fusari and Todorov, 2015).…”
Section: Introductionmentioning
confidence: 99%
“…Further support for non-affine stochastic volatility models is provided by Kaeck and Alexander (2012) which present comprehensive empirical results regarding the option pricing performance of affine and non-affine continuous time stochastic volatility models. The authors consider an exogenous non-affine constant elasticity of volatility (CEV)-type stochastic volatility model augmented by jumps in both the price and variance process and by a stochastic long-run variance level.…”
Section: Introductionmentioning
confidence: 99%