Interoception refers to the sensing of the internal state of the body and encompasses various bodily axes. Yet many interoceptive signals display unique qualities. The heart, lungs, and stomach each have their distinct frequencies, afferent pathways, and respective functions. At the same time each of these organs has been demonstrated to interact with neural activity and behaviour. To what extent then should different organs be treated as separate modalities in interoception? We here aim to answer this question by assessing in human participants whether the phase of these visceral rhythms is coupled to the corticospinal excitability of the motor system, and whether this coupling happens in an organ-specific or organ-general manner. We combined continuous physiological recordings with single pulse Transcranial Magnetic Stimulation (TMS) to probe phase-amplitude coupling between the phase of the cardiac, respiratory, and gastric rhythm and the amplitude of Motor Evoked Potentials (MEP). All three visceral rhythms contributed to MEP amplitude with similar effect sizes at the group level. However, we found no relation between coupling strengths with corticospinal excitability between the three organs. Thus, participants displaying high coupling with one organ did not necessarily display high coupling to the other organs, suggestive of unique interoceptive profiles. There was also no link between self-reported awareness of the organ and the actual coupling, suggesting these are distinct dimensions of interoception. Together these results show that each coupling is mediated by at least partially independent mechanisms.