1979
DOI: 10.1039/f29797500231
|View full text |Cite
|
Sign up to set email alerts
|

Voltage against current curves of cation exchange membranes

Abstract: The voltage against current curves of cation exchange membranes have been studied. They have a characteristic shape with a region of slow current variation (the plateau) followed by a region of accelerated current growth as the voltage is increased (the inflexion).

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

14
340
1
2

Year Published

2003
2003
2023
2023

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 393 publications
(357 citation statements)
references
References 0 publications
14
340
1
2
Order By: Relevance
“…A nonlinear electrokinetic effect known as Induced Charge Electroosmosis (ICEO) (Murtsovkin 1996;Squires & Bazant 2004) produces vortices at the edges of nanopores resembling recirculation vortices in separated flows even though the Reynolds number in such applications is essentially zero. Mixing due to these flow structures (Yossifon & Chang 2008;Chang & Yossifon 2009;Chang et al 2012) together with electroconvective instabilities (Zaltzman & Rubinstein 2007) are thought to be responsible for the "overlimiting" behaviour of the current-voltage characteristics of perm selective pores and membranes described by Rubinstein & Shtilman (1979). Similar vortical structures may be generated in cylindrical channels that undergo a sudden constriction when the relevant length scales are on the order of the Debye length (Park et al 2006).…”
Section: Introductionmentioning
confidence: 94%
“…A nonlinear electrokinetic effect known as Induced Charge Electroosmosis (ICEO) (Murtsovkin 1996;Squires & Bazant 2004) produces vortices at the edges of nanopores resembling recirculation vortices in separated flows even though the Reynolds number in such applications is essentially zero. Mixing due to these flow structures (Yossifon & Chang 2008;Chang & Yossifon 2009;Chang et al 2012) together with electroconvective instabilities (Zaltzman & Rubinstein 2007) are thought to be responsible for the "overlimiting" behaviour of the current-voltage characteristics of perm selective pores and membranes described by Rubinstein & Shtilman (1979). Similar vortical structures may be generated in cylindrical channels that undergo a sudden constriction when the relevant length scales are on the order of the Debye length (Park et al 2006).…”
Section: Introductionmentioning
confidence: 94%
“…The Where j J r , is the ion flux density, φ is the electric potential, V r is the fluid velocity vector, 0 ε is the dielectric permittivity of vacuum and ε is the relative permittivity of the medium. Rubinstein and Shtilman were the first who solved the extended Nerst-Planck equation for overlimiting currents [84]. They found out that the solution of these equations implied an increase with the current density of the space charge region thickness, becoming comparable to the thickness of the diffusion boundary layer.…”
Section: Electroconvectionmentioning
confidence: 99%
“…A number of different mechanisms have been suggested as explanation for this overlimiting current, most of which are probably important for some system configuration or another. The suggested mechanisms include bulk conduction through the extended space-charge region [4,5], current induced membrane discharge [6], water-splitting effects [7,8], electroosmotic instability [9,10], and most recently, electro-hydrodynamic chaos [11,12].…”
Section: Introductionmentioning
confidence: 99%