This paper proposes a novel 3-phase asymmetric 3-level T-type NPC inverter and studies its PWM performance using a virtual space vector pulse width modulation control strategy. Firstly, the mathematical model and characteristics of this economical topology are described. Then, a virtual space vector approach is proposed to build a space vector diagram for designing SVPWM control. Similar to the conventional 3-level NPC inverter, the asymmetric inverter can also work with the neutral point voltage self-balancing in a fundamental period, which enables employment of this topology in various applications. Finally, simulation and experiment results under different load conditions have shown good output performance of the asymmetric 3-level topology. Similar tests are also performed on both conventional 2-level and 3-level inverters for comparison. For an almost similar number of different voltage vectors in the space vector diagram, the asymmetric 3-level topology can compete with conventional 3-level inverters for low-cost applications. The obvious benefit of the asymmetric 3-level inverter is a smaller number of switches devices while it can achieve output performance similar to that of the conventional 3-level. The comparative investigation also shows that the total loss given by SVPWM for the asymmetric 3-level configuration is lower than that of the traditional 3-level inverter.