Abstract:Given a filling primitive geodesic loop in a closed hyperbolic surface one obtains a hyperbolic three-manifold as the complement of the loop's canonical lift to the projective tangent bundle. In this paper we give the first known lower bound for the volume of these manifolds in terms of the length of generic loops. We show that estimating the volume from below can be reduced to a counting problem in the unit tangent bundle and solve it by applying an exponential multiple mixing result for the geodesic flow.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.