The SM-MSR (small modular molten salt reactor) has a good prospect for development with regards to combining the superiority of the molten salt reactor and modularization technologies, showing the advantages of safety, reliability, low economic cost and flexibility of site selection. However, because its internal structural parts are not easily replaced, and the outer shielding structure is limited, the lifespan of the reactor vessel and its in-reactor shielding design needs to be addressed. In order to find an optimal shielding model with both high fuel efficiency and strong radiation shielding capability, five different design schemes were proposed in this work, which varied in thickness and boron concentration in inner-shielding materials. The neutron/gamma flux and DPA (displacements per atom)/helium production rates were evaluated to obtain an appropriate scheme. Several beneficial results were obtained. Considering the above factors and the actual manufacturing process, 20 cm-thick boron graphite with a 5 wt% Boron-10 concentration combined with a 1 cm-thick Hastelloy barrel was chosen as the in-reactor shielding structure. Outside the reactor, the neutron flux was reduced to 8.33 × 1010 cm−2 s−1, and the gamma flux was decreased to 1.13 × 1011 cm−2 s−1. The vessel/barrel material could maintain a lifespan of more than 10 years, while the burnup depth was 6.25% lower than that of a model without inner-shielding. The conclusions of this research can provide important references for the shielding design and parameter selections of small molten salt reactors in the future.