Recent years have seen a rapid rise in the generation of high-resolution topographic data using custom-built or commercial-grade Unmanned Aerial Vehicles (UAVs). Though several studies have demonstrated the application potential of UAV data, significant knowledge gaps still exist in terms of proper documentation of protocols for data acquisition, post-flight data processing, error assessments, and their mitigation. This work documents and provides guidelines for UAV data acquisition and processing from several years of field experience in diverse geomorphic settings across India, including undulating topography (~17 km2), alluvial plains (~142 km2), lowland-river basin (~66 km2), and a highly urbanized area (~5 km2). A total of 37,065 images with 16 and 20 Megapixels and 604 ground control points (GCPs) were captured with multiple UAV systems and processed to generate point clouds for a total area of ~230 km2. The Root Mean Square Error (RMSE) for each GCP for all sites ranged from 6.41 cm to 36.54 cm. This manuscript documents a comprehensive guideline for (a) pre-field flight planning and data acquisition, (b) generation and removal of noise and errors of the point cloud, and (c) generation of orthoimages and digital elevation models. We demonstrate that a well-distributed and not necessarily uniformly distributed GCP placement can significantly reduce doming error and other artifacts. We emphasize the need for using separate camera calibration parameters for each flight and demonstrate that errors in camera calibration can significantly impact the accuracy of the point cloud. Accordingly, we have evaluated the stability of lens calibration parameters between consumer-grade and professional cameras and have suggested measures for noise removal in the point cloud data. We have also identified and analyzed various errors during point cloud processing. These include systematic doming errors, errors during orthoimage and DEM generation, and errors related to water bodies. Mitigation strategies for various errors have also been discussed. Finally, we have assessed the accuracy of our point cloud data for different geomorphic settings. We concluded that the accuracy is influenced by Ground Sampling Distance (GSD), topographic features, and the placement, density, and distribution of GCPs. This guideline presented in this paper can be extremely beneficial to both experienced long-term users and newcomers for planning the UAV-based topographic survey and processing the data acquired.